
An Interactive Optimisation Tool for Allocation Problems
Fredrik Bonäs, Joakim Westerlund and Tapio Westerlund

Process Design Laboratory, Faculty of Technology,
Åbo Akademi University, Turku 20500, Finland

This paper presents an interactive tool (MINDAT) for solving allocation problems in up
to four dimensions. Typically such problems are one-dimensional multi-product
scheduling problems, two-dimensional cutting problems, three-dimensional packing
problems and four-dimensional logistical problems. The allocation problems are
formulated as mixed integer linear programming (MILP) models or mixed integer non-
linear programming (MINLP) models depending on the nature of the problem. The
software consists of a Graphical User Interface (GUI) into which problem data is feed
and where results are displayed, and a link to the commercial optimisation solver ILOG
CPLEX 10.0.1.

1. Introduction
The allocation problems are modelled with a fundamental problem formulation for N-
dimensional allocation problems presented in (Westerlund, 2005), with some slight
modifications. In these models items of N-dimensions are to be allocated in one or more
arrays, called containers, of the same dimension. A container may represent a limited
one-dimensional array, an unlimited space in time, a two-dimensional area or a three-
dimensional volume. If a three-dimensional item also has a fourth time-dimension,
determining its availability in time, it may be considered as a four-dimensional item.
The model handles all items as linear, rectangular, cubic etc. If all directional sizes of
the items are given, i.e. width, height and depth, a linear formulation is used. In this
case the model consists of an objective function and four main types of constraints.
These constraints determine the items position inside the containers, prevent
overlapping between the items, allow the items to rotate in any given direction and
define if a certain container is used or not. Additional constraints concerning connection
costs, costs for placement of an item in any given direction and costs for used space in a
certain direction in a container may also be used. For problems where the area or
volume is given instead of the specific directional sizes of the items a corresponding
non-linear formulation is used. This formulation results in a convex MINLP-model that
can be solved to global optimality using a simplification of the Extended Cutting Plane
Method described in (Westerlund and Pörn, 2002).

2. MINDAT
The program described in this paper is called MINDAT, which stands for Mixed Integer
N-dimensional Allocation Tool. The purpose of the software is that users easily shall be
able to solve allocation problems of different nature without deep insight in mixed
integer mathematical programming.

3. Problem formulation
The general model for an N-dimensional problem is formulated by using vector
notations in order to make the formulation as compact as possible. Thus an N-
dimensional item i is represented by its coordinate-vector ix (defining the centroid

coordinates of the item), where (, , , ...)T
i i i i ix y z t=x and dim()iN = x . The size of the

item i is, in each direction defined by the vector iX , where (, , , ...)T
i i i i iX Y Z T=X ,

, ,i i iX Y Z and iT represents the length, height, width and availability in time of the item.
Note that the elements of iX are variables. In case the size of an item is defined by
given length, height, width etc. The elements of iX , in the different directions, are

selected through so called orientation constraints from the size-vector (, , ...)T
i i i il h w=v

including given sizes for the item i. If the size of an item is defined by an area or
volume the elements of iX are defined through size constraints including upper and
lower bounds of the elements in iX . The size of the container in which item i is
allocated is defined by the vector iU . Each container k has a vector

(, , ,...)T
k L H W=V defining its size. The values of the variables in iU are selected from

one of the vectors kV .

3.1 An MILP formulation of an N-dimensional allocation problem
In this case the size, in different directions, of every item is predefined for each
dimension N, but the item may still be allowed to rotate. The total number of items is J,
and the total number of containers is K.

3.1.1 The Objective Function
The objective is to minimise a cost function. The cost can be dependent on which
container is used, total space used in a container in a certain direction, rectilinear
distance between items and the centroid coordinate of each item. The objective function
used in MINDAT is given in equation (1).

() ()
1K

k 1 2 1 1

min
jJ J

T T T
k k k k ij ij i i

j i i

C D
−

= = = =

⋅ + ⋅ + ⋅ + ⋅∑ ∑∑ ∑C s c d c x (1)

In equation (1) kC is the given cost for container k, and kD is a binary variable defining
if container k is used or not. The vector kC contains costs connected to the total used
space, ks in each coordinate direction, and ijc is a vector with costs for the rectilinear

distance, ijd between items i and j. Finally ic defines a costs connected to the centroid

coordinates ix for each item i. Elements of this latter cost parameter vector can, for
example, be used as “gravity parameters” to avoid “flying” boxes in packing problems.
Note that the objective function can be facilitated simply by leaving out one or more,
but not all, of the terms in equation (1).

3.1.2 Constraints
In this section we consider the constraints involved in the formulation. Some of the
constraints are given explicitly while the reader is referred to (Westerlund, 2005) for a
complete set of constraints. Space constraints are used to make sure that no items are
allocated outside a container, and that all items are allocated in one container. Overlap
Prevention Constraints are used to prevent items to overlap. Note that two items may
overlap each other in N-1 dimensions, (Westerlund, 2005). The constraints shown in
equation (2) are slightly modified from the overlap prevention constraints in
(Westerlund, 2005).

() ()

() ()
()

2
1

1,2,...,2
1

1

i j
ij i j ij

i j
ji j i ij

T
ij ij ij

ki kj ij

M
i j J

M k K
KG

Gβ β

+ ⎫
+ ≤ − + − ⎪

⎪ ≤ < ≤+ ⎪⎪+ ≤ − + − =⎬
⎪ ≠+ ≥ ⎪
⎪

+ ≤ + ⎪⎭

X X
δ x x e P

X X
δ x x e Q

e P Q

 (2)

The binary variable ijG in equation (2) equals one if the items i and j are located in the
same container; zero otherwise. The parameter M is an appropriate upper bound.

ijP and ijQ are vectors of binary variables that are used to prevent overlap. Since
according to (Westerlund, 2005) two items may overlap each other in N-1 dimensions,
only one of the binaries in the vector ijP and ijQ need to be equal to one (if the two

items are in the same container). When a binary variable in ijP or ijQ is zero the

corresponding inequality is relaxed. e is a unit vector of length N, (1,1,1,...)T =e , and

ijδ is a vector of parameters defining the minimum distance or setup-time between item

i and j. kiβ is a binary variable equal to one if item i is located in container k and zero
otherwise. Orientation Constraints are used to allow items to rotate. The container
constraints are used to define if a certain container is used or not. Since we in the
objective function minimise the distances (ks) occupied by items in each direction in
container k do we also need additional constraints defining the distance-vector. Such
constraints are given in (Westerlund, 2005). If only one container is available the
distance can be expressed in a more condensed form, see (Westerlund, 2005). If we
have a connection cost between items in the same container, the rectilinear distance
between these items needs to be calculated. Rectilinear distance constraints for this
purpose are also given in (Westerlund, 2005). If items i and j are in the same container
the vector ijd in the objective function (2) defines the rectilinear distance, otherwise ijd
is zero. Symmetry-breaking constraints are used to prevent equivalent symmetrical
solutions and, thus, also to reduce the solution time for the problem. This can be done
for example by forcing the first inserted item in each container into a certain corner of
the container. The reader is referred to (Westerlund, 2005) for a more detailed
discussion of the symmetry-breaking constraints. To prevent items to overload a

container (and also computationally to reduce solution time) capacity constraints has
additionally been formulated as shown in (Westerlund, 2005). If several identical
containers exist, in size and cost, one can furthermore add constraints determining
which of these should be allocated first. By using these constraints a container with a
lower index of the identical ones is filled to its maximum first.

3.2 Optimisation of Block/Box Layout Design Problem
In the block layout design problem, (Castillo et. al. 2005) or box layout design problem
in 3 and 4 dimensional cases, the items are represented by areas or volumes instead of
items with given side-lengths. In this case we will only consider one container which is
represented by an area or a volume with given size. The objective function and
constraints described in chapter 3.1 are used also in this case, although since the number
of containers is always equal to one the constraints concerning containers are modified
to fit this case. The orientation constraints can be removed since the vector iX now
consists of variables defined by upper and lower bounds, and the size of the item. These
bounds are in the 2-dimensional case defined according to (Castillo et. al. 2005) as,

{ }min ,up
i i iw a Wα= { }min ,up

i i ih a Hα= (3a)

max ,low i i
i up

i i

a a
w

hα
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

max ,low i i
i up

i i

a a
h

wα
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (3b)

The parameter iα in (3a)-(3b) is an aspect ratio defined by { } { }max , min ,i i i i il w l wα = ,

W and H are the width and height of the container and ia is the area of the item i. In
the three dimensional case we can obtain similar upper and lower bounds. In the four-
dimensional case the items time-dimension will be predefined and not altered, so all
constraints concerning three dimensions applies also in this case. Since part of the
problem now will be to determine the exact size of the items, this problem is non-linear.
The item sizes are defined by non-linear and non-convex equalities,

...i i i ih w l R⋅ ⋅ ⋅ = 1, 2,...,i J= (4)

In equation (4), ih , iw and il are the height, width and length to be obtained (i.e. the
elements of the vector iX) and iR is the given size of item i. In the two-dimensional
case iR is the given area, in the three-dimensional case the given volume etc. Although
equation (4) is a non-convex equality constraint it can generally, in the N-dimensional
case be relaxed into convex inequality constraints (5). The convex inequality constraints
for two- and three-dimensional cases are given as examples below.

1

2

: 0

: 0

i
i

i
i i i

i
i

i

R
f h

w
h w R

R
f w

h

⎧ − + ≤⎪
⎪⋅ ≥ ⇒ ⎨
⎪ − + ≤
⎪⎩

,

1

2

3

: 0

: 0

: 0

i
i

i i

i
i i i i i

i i

i
i

i i

R
f h

l w
R

h w l R f w
l h
R

f l
w h

⎧
− + ≤⎪ ⋅⎪

⎪⎪⋅ ⋅ ≥ ⇒ − + ≤⎨
⋅⎪

⎪
− + ≤⎪

⋅⎪⎩

 1, 2,...,i J= (5)

By linearization of (5) we obtain cutting-planes which can be added during optimisation
of the problem. In the three dimensional case the cutting planes are, for example,
defined by,

() ()

() ()

() ()

2 2

2 2

2 2

3

3

3

i i i
i i i k kk k k k

i ii i i i

i i i
i i i k kk k k k

i ii i i i

i i i
i i i k kk k k k

i ii i i i

R R R
h l w

l wl w l w

R R R
w l h

l hl h l h

R R R
l h w

h wh w h w

⎫
⎪− − ⋅ − ⋅ ≤ −

⋅ ⎪⋅ ⋅
⎪
⎪

− − ⋅ − ⋅ ≤ − ⎬⋅⋅ ⋅ ⎪
⎪
⎪− − ⋅ − ⋅ ≤ −
⎪⋅⋅ ⋅ ⎭

1,2,...,i J= (6)

Here k
il , k

ih and k
iw are the length, height and width obtained at iteration k. After

subsequently adding cutting planes of the form (6) to a previous MILP problem, the
problem is solved to global optimality using a simplification of the Extended Cutting
Plane Method described in (Westerlund and Pörn, 2002).

4. Solving problems with MINDAT
All configuration and data files used by MINDAT are saved in plain ASCII text. The
user can therefore define problem files with a text editor. Problems can however also be
defined by a walkthrough wizard included in MINDAT. The problems can be solved
with different options, such as for example any parameter configuration accepted by
CPLEX. Figure 1 illustrates the output from MINDAT solving a single-floor process
plant layout problem with 11 items. Problem data and previous results are found in
(Westerlund, 2005, Paper VI, table 5-7). Best solution time for the problem achieved
with MINDAT is 58 seconds on an AMD Athlon 64 3200+ computer with 1GB RAM.

Figure 1: Output from
MINDAT solving a single-
floor process plant layout
problem to optimum. The
solution is not identical to the
solution presented in
(Westerlund, 2005) but is a
multiple optimal solution.

Figure 3: MINDAT
solving a 3-dimensional
packing problem to
optimum. Items can be
made transparent with a
button-click to see what
lies behind them.
Problem data is found in
(Westerlund, 2005, paper
VI, table 8-9). The items
in container 4 are
illustrated in the figure.

Figure 2 shows how a solution for a two-dimensional block layout problem evolves.
When the optimisation starts, no cutting planes are yet added. This means that the items
will be smaller than allowed after the first iterations. In MINDAT this is illustrated by
lines on those items that are still too small. In the leftmost layout in figure 2, (obtained
after two iterations, and adding cutting planes after the first iteration) we can see that
only one item is large enough, and to the right we have the optimal allocation pattern
with valid sized items. The layout in the middle of figure 2 is an intermediate solution.
The problem data for the two dimensional block layout problem illustrated in figure 2 is
the problem f09 in (Westerlund, 2005, p. 25) with aspect ratio 4. Previous results and
solution data is found in (Castillo et. al. 2005). The best solution time with MINDAT
for this two-dimensional, 9 item, block layout problem is 750 seconds on an AMD
Athlon™ 64 3200+ computer with 1GB of RAM and CPLEX 10.0.1. In figure 3
MINDAT solves a 13 item, three-dimensional packing problem with four available
containers. By clicking on a container in the three-view to the left, during or after
optimisation, MINDAT draws the container with all its containing items.

5. References
Castillo, I. Westerlund, J. Emet, S. and Westerlund, T. 2005, Optimization of block

layout design problems with unequal areas: A comparison of MILP and MINLP
optimization methods. Computers & chemical engineering 30 , 54-69.

Westerlund, J. 2005, Aspects on N-dimensional allocation, PhD Thesis, Åbo Akademi
University, Finland, ISBN 952-12-1625-5.

Westerlund, T. and Pörn, R. (2002), Solving Pseudo-Convex Mixed Integer Problems
by Cutting Plane Techniques. Optimization and Engineering, 3, 253-280.

Figure 2: Output
from MINDAT
solving a block
layout problem.
Items marked with
lines have still to
reach their full
valid sizes.

