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This paper presents an interactive tool (MINDAT) for solving allocation problems in up 
to four dimensions. Typically such problems are one-dimensional multi-product 
scheduling problems, two-dimensional cutting problems, three-dimensional packing 
problems and four-dimensional logistical problems. The allocation problems are 
formulated as mixed integer linear programming (MILP) models or mixed integer non-
linear programming (MINLP) models depending on the nature of the problem. The 
software consists of a Graphical User Interface (GUI) into which problem data is feed 
and where results are displayed, and a link to the commercial optimisation solver ILOG 
CPLEX 10.0.1. 
 
1. Introduction 
The allocation problems are modelled with a fundamental problem formulation for N-
dimensional allocation problems presented in (Westerlund, 2005), with some slight 
modifications. In these models items of N-dimensions are to be allocated in one or more 
arrays, called containers, of the same dimension. A container may represent a limited 
one-dimensional array, an unlimited space in time, a two-dimensional area or a three-
dimensional volume. If a three-dimensional item also has a fourth time-dimension, 
determining its availability in time, it may be considered as a four-dimensional item. 
The model handles all items as linear, rectangular, cubic etc. If all directional sizes of 
the items are given, i.e. width, height and depth, a linear formulation is used. In this 
case the model consists of an objective function and four main types of constraints. 
These constraints determine the items position inside the containers, prevent 
overlapping between the items, allow the items to rotate in any given direction and 
define if a certain container is used or not. Additional constraints concerning connection 
costs, costs for placement of an item in any given direction and costs for used space in a 
certain direction in a container may also be used. For problems where the area or 
volume is given instead of the specific directional sizes of the items a corresponding 
non-linear formulation is used. This formulation results in a convex MINLP-model that 
can be solved to global optimality using a simplification of the Extended Cutting Plane 
Method described in (Westerlund and Pörn, 2002).  
 
2. MINDAT 
The program described in this paper is called MINDAT, which stands for Mixed Integer 
N-dimensional Allocation Tool. The purpose of the software is that users easily shall be 
able to solve allocation problems of different nature without deep insight in mixed 
integer mathematical programming. 



3. Problem formulation 
The general model for an N-dimensional problem is formulated by using vector 
notations in order to make the formulation as compact as possible. Thus an N-
dimensional item i is represented by its coordinate-vector ix (defining the centroid 

coordinates of the item), where ( , , , ...)T
i i i i ix y z t=x  and dim( )iN = x . The size of the 

item i is, in each direction defined by the vector iX , where ( , , , ...)T
i i i i iX Y Z T=X , 

, ,i i iX Y Z and iT represents the length, height, width and availability in time of the item. 
Note that the elements of iX  are variables. In case the size of an item is defined by 
given length, height, width etc. The elements of iX , in the different directions, are 

selected through so called orientation constraints from the size-vector ( , , ...)T
i i i il h w=v  

including given sizes for the item i. If the size of an item is defined by an area or 
volume the elements of iX  are defined through size constraints including upper and 
lower bounds of the elements in iX . The size of the container in which item i is 
allocated is defined by the vector iU . Each container k has a vector 

( , , ,...)T
k L H W=V defining its size. The values of the variables in iU are selected from 

one of the vectors kV . 
 
3.1 An MILP formulation of an N-dimensional allocation problem 
In this case the size, in different directions, of every item is predefined for each 
dimension N, but the item may still be allowed to rotate. The total number of items is J, 
and the total number of containers is K. 
 
3.1.1 The Objective Function 
The objective is to minimise a cost function. The cost can be dependent on which 
container is used, total space used in a container in a certain direction, rectilinear 
distance between items and the centroid coordinate of each item. The objective function 
used in MINDAT is given in equation (1). 
 

( ) ( )
1K

k 1 2 1 1

min
jJ J

T T T
k k k k ij ij i i

j i i

C D
−

= = = =

⋅ + ⋅ + ⋅ + ⋅∑ ∑∑ ∑C s c d c x              (1) 

 
In equation (1) kC is the given cost for container k, and kD is a binary variable defining 
if container k is used or not. The vector kC contains costs connected to the total used 
space, ks  in each coordinate direction, and ijc is a vector with costs for the rectilinear 

distance, ijd  between items i and j. Finally ic defines a costs connected to the centroid 

coordinates ix for each item i. Elements of this latter cost parameter vector can, for 
example, be used as “gravity parameters” to avoid “flying” boxes in packing problems. 
Note that the objective function can be facilitated simply by leaving out one or more, 
but not all, of the terms in equation (1). 
 



3.1.2 Constraints 
In this section we consider the constraints involved in the formulation. Some of the 
constraints are given explicitly while the reader is referred to (Westerlund, 2005) for a 
complete set of constraints. Space constraints are used to make sure that no items are 
allocated outside a container, and that all items are allocated in one container. Overlap 
Prevention Constraints are used to prevent items to overlap. Note that two items may 
overlap each other in N-1 dimensions, (Westerlund, 2005). The constraints shown in 
equation (2) are slightly modified from the overlap prevention constraints in 
(Westerlund, 2005). 
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The binary variable ijG in equation (2) equals one if the items i and j are located in the 
same container; zero otherwise. The parameter M  is an appropriate upper bound. 

ijP and ijQ are vectors of binary variables that are used to prevent overlap. Since 
according to (Westerlund, 2005) two items may overlap each other in N-1 dimensions, 
only one of the binaries in the vector ijP  and ijQ  need to be equal to one (if the two 

items are in the same container). When a binary variable in ijP  or ijQ  is zero the 

corresponding inequality is relaxed. e  is a unit vector of length N, (1,1,1,...)T =e , and  

ijδ  is a vector of parameters defining the minimum distance or setup-time between item 

i and j. kiβ is a binary variable equal to one if item i is located in container k and zero 
otherwise. Orientation Constraints are used to allow items to rotate. The container 
constraints are used to define if a certain container is used or not. Since we in the 
objective function minimise the distances ( ks ) occupied by items in each direction in 
container k do we also need additional constraints defining the distance-vector. Such 
constraints are given in (Westerlund, 2005). If only one container is available the 
distance can be expressed in a more condensed form, see (Westerlund, 2005). If we 
have a connection cost between items in the same container, the rectilinear distance 
between these items needs to be calculated. Rectilinear distance constraints for this 
purpose are also given in (Westerlund, 2005). If items i and j are in the same container 
the vector ijd  in the objective function (2) defines the rectilinear distance, otherwise ijd  
is zero. Symmetry-breaking constraints are used to prevent equivalent symmetrical 
solutions and, thus, also to reduce the solution time for the problem. This can be done 
for example by forcing the first inserted item in each container into a certain corner of 
the container. The reader is referred to (Westerlund, 2005) for a more detailed 
discussion of the symmetry-breaking constraints. To prevent items to overload a 



container (and also computationally to reduce solution time) capacity constraints has 
additionally been formulated as shown in (Westerlund, 2005). If several identical 
containers exist, in size and cost, one can furthermore add constraints determining 
which of these should be allocated first. By using these constraints a container with a 
lower index of the identical ones is filled to its maximum first.  
 
3.2 Optimisation of Block/Box Layout Design Problem 
In the block layout design problem, (Castillo et. al. 2005) or box layout design problem 
in 3 and 4 dimensional cases, the items are represented by areas or volumes instead of 
items with given side-lengths. In this case we will only consider one container which is 
represented by an area or a volume with given size. The objective function and 
constraints described in chapter 3.1 are used also in this case, although since the number 
of containers is always equal to one the constraints concerning containers are modified 
to fit this case. The orientation constraints can be removed since the vector iX  now 
consists of variables defined by upper and lower bounds, and the size of the item. These 
bounds are in the 2-dimensional case defined according to (Castillo et. al. 2005) as, 
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The parameter iα  in (3a)-(3b) is an aspect ratio defined by { } { }max , min ,i i i i il w l wα = ,  

W  and H are the width and height of the container and ia  is the area of the item i. In 
the three dimensional case we can obtain similar upper and lower bounds. In the four-
dimensional case the items time-dimension will be predefined and not altered, so all 
constraints concerning three dimensions applies also in this case. Since part of the 
problem now will be to determine the exact size of the items, this problem is non-linear. 
The item sizes are defined by non-linear and non-convex equalities, 
  

...i i i ih w l R⋅ ⋅ ⋅ =  1, 2,...,i J=              (4) 
 
In equation (4), ih , iw  and il  are the height, width and length to be obtained (i.e. the 
elements of the vector iX ) and iR  is the given size of item i. In the two-dimensional 
case iR  is the given area, in the three-dimensional case the given volume etc. Although 
equation (4) is a non-convex equality constraint it can generally, in the N-dimensional 
case be relaxed into convex inequality constraints (5). The convex inequality constraints 
for two- and three-dimensional cases are given as examples below. 
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 1, 2,...,i J=   (5) 

By linearization of (5) we obtain cutting-planes which can be added during optimisation 
of the problem. In the three dimensional case the cutting planes are, for example, 
defined by, 
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1,2,...,i J=           (6) 

Here k
il , k

ih  and k
iw  are the length, height and width obtained at iteration k. After 

subsequently adding cutting planes of the form (6) to a previous MILP problem, the 
problem is solved to global optimality using a simplification of the Extended Cutting 
Plane Method described in (Westerlund and Pörn, 2002).  
 
4. Solving problems with MINDAT 
All configuration and data files used by MINDAT are saved in plain ASCII text. The 
user can therefore define problem files with a text editor. Problems can however also be 
defined by a walkthrough wizard included in MINDAT.  The problems can be solved 
with different options, such as for example any parameter configuration accepted by 
CPLEX. Figure 1 illustrates the output from MINDAT solving a single-floor process 
plant layout problem with 11 items. Problem data and previous results are found in 
(Westerlund, 2005, Paper VI, table 5-7). Best solution time for the problem achieved 
with MINDAT is 58 seconds on an AMD Athlon 64 3200+ computer with 1GB RAM.  
 

 

Figure 1: Output from 
MINDAT solving a single-
floor process plant layout 
problem to optimum. The 
solution is not identical to the 
solution presented in 
(Westerlund, 2005) but is a 
multiple optimal solution. 



Figure 3: MINDAT 
solving a 3-dimensional 
packing problem to 
optimum. Items can be 
made transparent with a 
button-click to see what 
lies behind them. 
Problem data is found in 
(Westerlund, 2005, paper 
VI, table 8-9). The items 
in container 4 are 
illustrated in the figure. 

 
Figure 2 shows how a solution for a two-dimensional block layout problem evolves. 
When the optimisation starts, no cutting planes are yet added. This means that the items 
will be smaller than allowed after the first iterations. In MINDAT this is illustrated by 
lines on those items that are still too small. In the leftmost layout in figure 2, (obtained 
after two iterations, and adding cutting planes after the first iteration) we can see that 
only one item is large enough, and to the right we have the optimal allocation pattern 
with valid sized items. The layout in the middle of figure 2 is an intermediate solution. 
The problem data for the two dimensional block layout problem illustrated in figure 2 is 
the problem f09 in (Westerlund, 2005, p. 25) with aspect ratio 4. Previous results and 
solution data is found in (Castillo et. al. 2005). The best solution time with MINDAT 
for this two-dimensional, 9 item, block layout problem is 750 seconds on an AMD 
Athlon™ 64 3200+ computer with 1GB of RAM and CPLEX 10.0.1.  In figure 3 
MINDAT solves a 13 item, three-dimensional packing problem with four available 
containers. By clicking on a container in the three-view to the left, during or after 
optimisation, MINDAT draws the container with all its containing items. 

 
5. References 
Castillo, I. Westerlund, J. Emet, S. and Westerlund, T. 2005, Optimization of block 

layout design problems with unequal areas: A comparison of MILP and MINLP 
optimization methods. Computers & chemical engineering 30 ,  54-69. 

Westerlund, J. 2005, Aspects on N-dimensional allocation, PhD Thesis, Åbo Akademi 
University, Finland, ISBN 952-12-1625-5. 

Westerlund, T. and Pörn, R. (2002), Solving Pseudo-Convex Mixed Integer Problems 
by Cutting Plane Techniques. Optimization and Engineering, 3, 253-280. 

Figure 2: Output 
from MINDAT 
solving a block 
layout problem. 
Items marked with 
lines have still to 
reach their full 
valid sizes. 


